MODELING THE EARTH'S IONOSPHERE

J.D. Huba and G. Joyce* Plasma Physics Division Naval Research Laboratory Washington, DC

ISSS-10 Symposium Banff, Canada July 2011

* Icarus Research, Inc.

research supported by ONR

- neutrals ionized by sun's EUV radiation (10Å- 1000Å)
- extends from 90 km to 1000s km
- $n_e \lesssim 10^6 \ \mathrm{cm}^{-3} \ \mathrm{but} \ n_n \lesssim 10^{10} \ \mathrm{cm}^{-3}$
- multi-ion plasma
- very low β plasma: $\beta \sim 10^{-5}$
- on the cold side $T \lesssim 3000 \mathrm{K}$ (or .3 eV)
- ullet anisotropic conductivities: $\sigma_{\parallel} >> \sigma_{\perp}$
- assume magnetic field lines are equipotentials

BUT NOT AN ISOLATED SYSTEM

coupled to the thermosphere and magnetosphere

- plasma dynamics
- neutral atmosphere
- photoionization
- chemistry
- magnetic field
- electric field

PLASMA DYNAMICS

ion continuity

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{V}_i) = \underline{P_i} - \underline{L_i} n_i$$

ion velocity

$$\begin{split} \frac{\partial \mathbf{V}_i}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_i &= -\frac{1}{\rho_i} \nabla \mathbf{P}_i + \frac{e}{m_i} \mathbf{E} + \frac{e}{m_i c} \mathbf{V}_i \times \mathbf{B} + \mathbf{g} \\ -\nu_{in} (\mathbf{V}_i - \mathbf{V_n}) - \sum_j \nu_{ij} \left(\mathbf{V}_i - \mathbf{V}_j \right) \end{split}$$

ion temperature

$$\frac{\partial T_i}{\partial t} + \mathbf{V}_i \cdot \nabla T_i + \frac{2}{3} T_i \nabla \cdot \mathbf{V}_i + \frac{2}{3} \frac{1}{n_i k} \nabla \cdot \mathbf{Q}_i = Q_{in} + Q_{ij} + Q_{ie}$$

PLASMA DYNAMICS

electron momentum

$$0 = -\frac{1}{n_e m_e} b_s \frac{\partial P_e}{\partial s} - \frac{e}{m_e} E_s$$

• electron temperature

$$\frac{\partial T_e}{\partial t} - \frac{2}{3} \frac{1}{n_e k} b_s^2 \frac{\partial}{\partial s} \kappa_e \frac{\partial T_e}{\partial s} = Q_{en} + Q_{ei} + Q_{phe}$$

NEUTRAL ATMOSPHERE

dominant species:

atomic: H, He, N, O molecular: N₂, NO, O₂

• neutral density scale height:

$$H = kT/mg$$

- empirical models
 - NLRMSISE-00 (Picone et al.) provides neutral densities and temperature
 - HWM93/HWM07 (Hedin/Drob) provides neutral wind
- first principle models
 - TIME-GCM (Roble/Crowley)
 - CTIP (Fuller-Rowell)
 - GTIM (Ridley)
 - USU (Schunk)

PHOTOIONIZATION

- dominant production mechanism for ionospheric plasma
- solar X-ray (1-170~Å) and EUV (170-1750~Å) radiation can ionize the ionosphere neutral gas

Species	IP (ev)	λ (Å)
Н	13.6	912
He	24.6	504
N	14.5	853
0	13.6	911
N_2	15.6	796
NO	9.3	1340
O_2	10.1	1027

PHOTOIONIZATION: CALCULATION

- production (P) needs to be calculated
- ullet continuity equation for ion species X^+

$$dX^+/dt = P_{X^+} = n_n(X)I_R$$
 where

$$P_X = n_n(X) \sum_{\lambda} \underbrace{\sigma_X^{(i)}(\lambda)}_{\text{photoionization}} \underbrace{\exp\left[-\sum_{m} \sigma_m^{(a)}(\lambda) \int_z^{\infty} n_m(s) \, ds\right]}_{\text{photoabsorption}} \underbrace{\phi_{\infty}(\lambda)}_{\text{solar flux}}$$

- empirical models: flux $\phi_{\infty}(\lambda)$ is in 37 wavelength bins
 - Hinteregger
 - Torr and Torr
 - EUVAC (*Richards et al.*) function of geophysical conditions $\phi_i = F74113_i[1+A_i(P-80)] \text{ where } P = (F10.7A+F10.7)/2$
- data/model driven
 - NRLEUV (Lean, Warren, and Mariska)
 - SOLAR2000 (Tobiska)
 - FISM (Chamberlin)
 - HEUVAC (Richards et al.)
- photoionization/photoabsorption cross-sections tabulated

CHEMISTRY

- production (P) and loss (L) mechanism
- ullet continuity equations for ion species X^+ and Y^+

$$\begin{split} dX^+/dt &= P_{X^+} - L_{X^+} & \text{ (e.g., } dH^+/dt = P_{H^+} - L_{H^+} \text{)} \\ dY^+/dt &= P_{Y^+} - L_{Y^+} & \text{ (e.g., } dO^+/dt = P_{O^+} - L_{O^+} \text{)} \end{split}$$

• general chemical reaction (e.g., charge exchange)

$$X^+ + Y \to X + Y^+ \quad \text{Rate}: k_{X^+Y}$$
 (e.g., $H^+ + O \to H + O^+ \quad \text{Rate}: k_{H^+O})$

thus, in continuity use

$$\begin{split} L_{X+} &= P_{Y+} = k_{X+Y} n(X^+) n(Y) \\ \text{(e.g., } L_{H^+} &= P_{O^+} = k_{H^+O} n(H^+) n(O)) \end{split}$$

CHEMICAL REACTION RATES

Chemical Reaction Rates:

Reaction	Rate, cm ³ s ⁻¹
$H^+ + O \rightarrow O^+ + H$	$2.2 \times 10^{-11} T^{0.5} (H^+)$
$He^+ + N_2 o N_2{}^+ + He$	3.5×10^{-10}
$\mathrm{He^+} + \mathrm{N_2} \rightarrow \mathrm{N^+} + \mathrm{N} + \mathrm{He}$	8.5×10^{-10}
$\mathrm{He^+} + \mathrm{O_2} \rightarrow \mathrm{O^+} + \mathrm{O} + \mathrm{He}$	8.0×10^{-10}
$He^+ + O_2 \to O_2{}^+ + He$	2.0×10^{-10}
$N^+ + O_2 o NO^+ + O$	2.0×10^{-10}
$N^+ + O_2 \rightarrow O_2^+ + N(2D)$	4.0×10^{-10}
$N^+ + O \rightarrow O^+ + N$	1.0×10^{-12}
$N^+ + NO \rightarrow NO^+ + O$	2.0×10^{-11}
$O^+ + H \rightarrow H^+ + O$	$2.5 \times 10^{-11} T_n^{0.5}$
$O^+ + N_2 o NO^+ + N$	k_1
$O^{+} + O_{2} \rightarrow O_{2}^{+} + O$	k_2
$O^+ + NO \rightarrow NO^+ + O$	1.0×10^{-12}
$N_2^+ + O \rightarrow NO^+ + N(2D)$	$1.4 \times 10^{-10} T_{300}^{-0.44} (O+)$ $5.0 \times 10^{-11} T_{300}^{-0.5} (O+)$
$N_2^+ + O_2 \rightarrow O_2^+ + N_2$	$5.0 \times 10^{-11} T_{300}^{-0.5} (O+)$
$N_2^+ + O_2 \rightarrow NO^+ + NO$	1.0×10^{-14}
$N_2^+ + NO \rightarrow NO^+ + N_2$	3.3×10^{-10}
$O_2^+ + N \rightarrow NO^+ + O$	1.2×10^{-10}
$O_2^+ + N(2D) \rightarrow N^+ + O_2$	2.5×10^{-10}
$O_2^+ + NO \to NO^+ + O_2$	4.4×10^{-10}
$O_2{}^+ + N_2 o NO^+ + NO$	5.0×10^{-16}

Recombination Rates:

Reaction	Rate, cm 3 s $^{-1}$
$H^+ + e \rightarrow H$	$4.43 \times 10^{-12}/T_e^{0.7}$
$\mathrm{He^+} + \mathrm{e} ightarrow \mathrm{He}$	$4.43 \times 10^{-12}/T_e^{0.7}$
$N^+ + e \rightarrow N$	$4.43 \times 10^{-12}/T_e^{0.7}$
$O^+ + e \to O$	$4.43 \times 10^{-12}/T_e^{0.7}$
$N_2^+ + e \rightarrow N_2$	$1.80 \times 10^{-7}/T_e^{0.39}$
$NO^+ + e \to NO$	$4.20 \times 10^{-7}/T_e^{0.85}$
$O_2^+ + e \to O_2$	$1.60 \times 10^{-7} / T_e^{0.55}$

$$\begin{array}{l} k_1 = 1.53 \times 10^{-12} - 5.92 \times 10^{-13} T_{300}(\mathrm{O}^+) \\ + 8.60 \times 10^{-14} T_{300}^2(\mathrm{O}^+) \text{ for } T(\mathrm{O}^+) < 1700 K \\ k_1 = 1.73 \times 10^{-12} - 1.16 \times 10^{-12} T_{300}(\mathrm{O}^+) \\ + 1.48 \times 10^{-13} T_{300}^2(\mathrm{O}^+) \text{ for } T(\mathrm{O}^+) > 1700 K \\ k_2 = 2.82 \times 10^{-11} - 7.74 \times 10^{-12} T_{300}(\mathrm{O}^+) \\ + 1.07 \times 10^{-12} T_{300}^2(\mathrm{O}^+) - 5.17 \times 10^{-14} T_{300}^3(\mathrm{O}^+) \\ + 9.65 \times 10^{-16} T_{300}^2(\mathrm{O}^+) \\ T_{300} = T/300 \end{array}$$

MAGNETIC FIELD

- appropriate field: IGRF
- modeled as a tilted (offset) dipole field, or IGRF-like
- low- to mid-latitude: closed field lines
- high latitude: open field lines

ELECTRIC FIELD

- Low latiutde: driven by neutral wind
 - empirical models (e.g., Fejer-Scherliess)
 - self-consistently determined
- high latitude: driven by solar wind/magnetosphere currents
 - data-driven models (e.g., AMIE)
 - empirical models (e.g., Heppner-Maynard, Weimer)
 - self-consistently determined from global magnetospheric models (e.g., LFM, RCM)

$$\nabla \cdot \mathbf{J} = 0 \quad \mathbf{J} = \sigma \mathbf{E} \quad \rightarrow \quad \nabla \cdot \sigma \mathbf{E} = 0$$

Field-line integration: $\int \nabla \cdot \sigma \mathbf{E} \, ds = 0$

$$\mathbf{E} = -\nabla \Phi$$

$$\nabla \cdot \mathbf{\Sigma} \nabla \Phi = S(J_{\parallel}, V_n, g)$$

- ullet Σ : field-line integrated Hall and Pedersen conductivities
- J_{\parallel} : magnetosphere driven
- V_n : solar and magnetosphere driven

- transport
 - parallel
 - perpendicular
- grid
 - lagrangian
 - eulerian

continuity equation

$$\begin{split} \frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{V}_i) &= P_i - L_i n_i \\ \frac{\partial n_i}{\partial t} + \nabla_{\parallel} \cdot (n_i \mathbf{V}_{i\parallel}) + \nabla \cdot (n_i \mathbf{V}_{i\perp}) &= P_i - L_i n_i \end{split}$$

parallel motion (diffusion/advection)

$$\frac{\partial n_i}{\partial t} + \nabla_{\parallel} \cdot (n_i \mathbf{V}_{\parallel i}) = P_i - L_i n_i \quad \text{for} \quad t \stackrel{\Delta t}{\to} t *$$

• perpendicular motion (advection)

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{V}_{\perp i}) = 0 \quad \text{for} \quad t * \stackrel{\Delta t}{\to} t + \Delta t$$

$$\begin{split} \frac{\partial n_i}{\partial t} + b_s^2 \frac{\partial}{\partial s} \frac{n_i V_{is}}{b_s} &= P_i - L_i n_i \\ 0 &= -b_s \frac{\partial (P_i/n_i m_i + P_e/n_e m_i)}{\partial s} + g_s - \nu_{in} (V_{is} - V_{ns}) - \sum_i \nu_{ij} (V_{is} - V_{js}) \end{split}$$

- procedure:
 - \rightarrow solve for ion velocity V_{is}
 - → substitute into continuity
 - → obtain fully implicit differencing scheme
 - \rightarrow iterate or direct solve to obtain a solution
- advantage: large time steps (~ 5 15 min)
- disadvantage: complexity, stability, limited species (e.g., no molecular transport)

$$\begin{split} \frac{\partial n_i}{\partial t} + b_s^2 \frac{\partial}{\partial s} \frac{n_i V_{is}}{b_s} &= P_i - L_i n_i \\ \frac{\partial V_{is}}{\partial t} + (\mathbf{V}_i \cdot \nabla) V_{is} &= -\frac{1}{n_i m_i} b_s \frac{\partial (P_i + P_e)}{\partial s} + g_s - \nu_{in} (V_{is} - V_{ns}) - \sum_i \nu_{ij} (V_{is} - V_{js}) \end{split}$$

- procedure:
 - → diffusion terms backward biased (implicit)
 - ightarrow advection terms use donor cell method
 - → obtain semi-implicit differencing scheme
- disadvantage: small time steps (~ 1 15 sec)
- advantage: simplicity, stability, flexibility, better description at high altitudes

PERPENDICULAR TRANSPORT

grid: lagrangian vs eurlerian

- ullet perpendicular dynamics ($E \times B$ transport)
 - lagrangian grid: follow flux tube motion
 - eulerian grid: fixed mesh

GRID COMPARISON

lagrangian, orthogonal eulerian, nonorthogonal eulerian

THE BEGINNING OF ESF

Booker and Wells, J. Geophys. Res. 43, 249 (1938)

SCATTERING OF RADIO WAVES BY THE \emph{F} -REGION OF THE IONOSPHERE

BY H. G. BOOKER AND H. W. WELLS

BUBBLE CARTOON

Woodman and LaHoz, J. Geophys. Res. 81, 5447 (1976)

Fig. 9. Schematic representation of a three-density model of the ionosphere showing the formation of a bubble of low electron density and its propagation to the gravitationally stable top. The middle fluid is heavier than the top, and the top fluid heavier than the bottom.

- comprehensive: multi-ion dynamics
- ions: H⁺,O⁺,He⁺,N⁺,N⁺₂,NO⁺,O⁺₂
- self-consistent potential solver potential equation (for dipole field)
- neutral species: NRLMSISE00/HWM, TIMEGCM, and GITM
- EUV models (EUVAC, NRLEUV, FISM)
- global coverage $(\pm 89^{\circ})$
- nonorthogonal, nonuniform fixed grid (closed)

GLOBAL SOLUTION

incorporate a high-resolution grid in a global model, i.e., SAMI3

- reference frame: copernican (sun-fixed: rotating earth)
- coarse mesh: 90 grid points
- ullet zonal resolution \sim 500 km
- high resolution mesh: 956 grid points between \sim 16:30 MLT 22:30 MLT
- ullet zonal resolution $\sim .0625^\circ$ or ~ 7 km

SAMI2 OPEN SOURCE PROJECT

http://wwwppd.nrl.navy.mil/sami2-OSP/index.html

- overview of SAMI2 model
 - basic equations
 - physical inputs
 - numerical methods